Tag Archives: chaotic flows

A simple second order differential equation, ovals and chaos

In our youth as a consequence of our undying fascination with ovals we explored many means of generating them. In course of those explorations we experimentally arrived at a simple second order differential equation that generated oval patterns. It also … Continue reading

Posted in Scientific ramblings | Tagged , , , , , , , , , , | Leave a comment

A novel discrete map exhibiting chaotic behavior

The map proposed by R. Lozi over 40 years ago is one of the simplest two dimensional maps that exhibits chaotic behavior and generates a wide range of interesting structures. The map may be defined thus: where are real parameters. … Continue reading

Posted in Scientific ramblings | Tagged , , , , , , , , | Leave a comment

The geometric principles behind discrete dynamical systems based on the generalized Witch of Agnesi

Consider the family of curves defined by the equation following parametric equation , where and It defines a family of probability distribution functions (PDFs): This can be seen from the above equations because Figure 1 Examples of these PDFs are … Continue reading

Posted in Scientific ramblings | Tagged , , , , , , , , , , | Leave a comment

Some simple maps specifying strange attractors

This note may be read a continuation of: Some reminiscences of our study of chaotic maps-2 While the story of the chaotic 2D attractors began with the simple-looking maps of Henon and Lozi, by the early 1990s the high-point was … Continue reading

Posted in art, Scientific ramblings | Tagged , , , , , , | Leave a comment

Chaotic flows

Posted in art | Tagged , , | Leave a comment