# Tag Archives: conics

## The shape of dinosaur eggs

Readers of these pages will know that we have a special interest in the geometry of ovals. One of the long-standing problems in this regard is: what is the curve that best describes the shape of a dinosaurian egg? While … Continue reading

## Conic conquests: biographical and historical

PDF file of same article Studying mathematics with our father was not exactly an easy-going experience; nevertheless, it was the source of many a spark that inspired fruitful explorations and life-lessons. We recount one such thread here, and reflect on … Continue reading

## Discovering bronze in the characteristic ellipse of right triangles

The arithmetic mean square of a right triangle An entire family of right triangles that includes all the different forms of right triangles defined in terms of the proportion of their legs can be obtained by setting their altitude to … Continue reading

## Division-multiplication parabolas, triplications, and quadratic residues

Introduction Many strands of our investigations on conic-generating integer sequences, word fractals and cellular automaton models for pattern formation came together in an unexpected manner while investigating a simple integer sequence. While some of these connections have have been known … Continue reading

## The mean hyperbola and other mean functions

Let be two numbers such that, We use to construct a specific rectangular hyperbola using one of the following methods: Method-I (Figure 1: this is based on an approach we described earlier) Figure 1 1) Mark point , which will … Continue reading

## The hearts and the intrinsic Cassinian curve of an ellipse

Introduction This investigation began with our exploration of pedal curves during the vacation following our university entrance exams in the days of our youth. It led to us discovering for ourselves certain interesting heart-shaped curves, which are distinct from the … Continue reading

## The quotient triangle, the parabola-hyperbola sequence, the remainder triangle and perfect numbers

The quotient triangle Consider a positive integer . Then for all do the floor operation . Say , we get , a sequence of quotients of the division . If we do this for all we get the quotient triangular … Continue reading

## Hofstadter and Nārāyaṇa: connections across space and time

The scientist-philosopher Douglas Hofstadter presents an interesting single-seeded sequence H in his book ‘Gödel, Escher, Bach: An Eternal Golden Braid’. It is generated by the recurrence relation, where …(1) Working it out one can see that it takes the form: … Continue reading

## Means and conics

By the time one reaches high school one learns that: (i) there are four means that one might find some use of in life (I know there are more though they are hardly used) – the arithmetic mean which is … Continue reading

## Constructing a regular heptagon with hyperbola and parabola

There is little doubt that Archimedes was one of the greatest yavana intellectuals. He would also figure in any list of the greatest mathematician-scientists of all times. His work on the construction of a regular heptagon has not survived the … Continue reading

## Doubling the cube with ellipses

The problem of doubling of the cube which emerged in the context of the doubling of the cubical altar of the great god Apollo cannot be solved using just a straight-edge and a compass. It needs one to construct a … Continue reading

## The Apollonian parabola

Some say that Archimedes and Apollonius of Perga (modern Murtina in Turkey; the center of the great yavana temple of the goddess Artemis in the days of Apollonius) were the two great yavana-s who might have rivaled Karl Gauss or … Continue reading