# Tag Archives: Euler

## Bhāskara’s dual square indeterminate equations

PDF for convenient reading Figure 1. Sum and difference of squares amounting to near squares. In course of our exploration of the bhūjā-koṭi-karṇa-nyāya in our early youth we had observed that there are examples of “near misses”: . Hence, we … Continue reading

## Two squares that sum to a cube

Introduction This note records an exploration that began in our youth with the simple arithmetic question: Sum of the squares of which pair integers yields a perfect cube? Some obvious cases immediately come to mind: . In both these cases … Continue reading

## From Plato to Euler and back

This is primarily meant as an educational handout on some very basic theorems of geometry that one might have studied in school. Some educated adults whom we asked about these had either forgotten them or claimed to have never studied … Continue reading

## Reflections on our journey through the aliquot sums and sequences

The numerology of aliquot sums and perfect numbers The numerology of the Pythagorean sages among the old yavana-s is one of the foundations of science and mathematics as we know it. One remarkable class of numbers which they discovered were … Continue reading

## Counting primes, arithmetic functions, Ramanujan and the like

We originally wished to have a tail-piece for our previous note that would describe more precisely the relationship between the Möbius function and the distribution of prime numbers. However, since that would have needed a bit of a detour in … Continue reading

Posted in History, Scientific ramblings | | Leave a comment

## Of lives of men; of times of men-II

Of lives of men; of times of men-I Vidrum: “When we attended the discussions at the Right Wing Debate club we heard the president Rammandir Mishra repeatedly emphasize that South Asian civilization was not a ‘history-centric’ civilization and that history-centricism … Continue reading

Posted in Heathen thought, History, Life | | Leave a comment

## Triangles, Hexes and Cubes

One philosophical question which we have often ponder about is: Are numbers “real”? One way to approach this question is via figurate numbers, where numbers directly manifest as very tangible geometry. This idea has deep roots in our tradition: as … Continue reading

## Some personal reflections on Carl Gauss, Bernhard Riemann and associated matters

The biochemist Albert Szent-Györgyi had famously remarked that as he successively, journeyed for a better understanding of life from cell biology, to physiology, to pharmacology, to bacteriology, to biochemistry, to physical chemistry to quantum mechanics he lost life between his … Continue reading

Posted in History, Life, Scientific ramblings | | Leave a comment

## Euler’s squares

On account of our fascination with the geometry of origami (albeit not well-endowed in mathematical capacity) we discovered for ourselves shortly after our father had taught us trigonometry that, We had earlier shown the origami proof for that. But it … Continue reading