Tag Archives: fibonacci

Bhāskara’s dual square indeterminate equations

PDF for convenient reading Figure 1. Sum and difference of squares amounting to near squares. In course of our exploration of the bhūjā-koṭi-karṇa-nyāya in our early youth we had observed that there are examples of “near misses”: . Hence, we … Continue reading

Posted in Heathen thought, Scientific ramblings | Tagged , , , , , , , , , , , , , , , , , , | Leave a comment

The Mātrā-meru and convergence to a triangle

What is presented below will be elementary for someone with even just the mastery of secondary school mathematics. Nevertheless, even simple stuff might present points of interest to people who see beauty in such things. Consider the following question: Given … Continue reading

Posted in Scientific ramblings | Tagged , , , , , , , | Leave a comment

Sequences related to maps based on simple fractional functions

One of the pleasures of an unstructured youth in the pre-computer era was what we called calculator games. As our father took his prized calculator with him to work we only got a little time with it in the evenings. … Continue reading

Posted in Scientific ramblings | Tagged , , , , , , , , , | Leave a comment

Some Nārāyaṇa-like convergents and their geometric and trigonometric connections

While playing with an iterative geometric construction in our youth we discovered for ourselves a particular right triangle whose sides are in the proportion , where is the Golden Ratio. This triangle is of course famous as being the basis … Continue reading

Posted in Heathen thought, Scientific ramblings | Tagged , , , , , , , , , | Leave a comment

Some notes on rational sector triangle triples

Rational points on a unit circle There are some events that happen in the course of ones life that might be considered historical or world-changing. One such event from our lifetime is the proving of the Last Theorem of Fermat … Continue reading

Posted in Scientific ramblings | Tagged , , , , , , , , , | Leave a comment

Nārāyaṇa’s sequence, Mādhava’s series and pi

The coin-toss problem and Nārāyaṇa’s sequence If you toss a fair coin times how many of the possible result-sequences of tosses will not have a successive run of 3 or more Heads? The same can be phrased as given tosses … Continue reading

Posted in Heathen thought, History, Scientific ramblings | Tagged , , , , , , , , , , , , , , , , , , | Leave a comment